

Collective behavior in small systems from geometry-controlled measurements at 200

Shengli Huang for PHENIX collaboration

Outline

1) Physics Motivation

- 2) Results and Discussions
- ✓ Long-range angular correlation in small collisions at 200 GeV
- ✓ Charged hadron v₂ in p+Au, d+Au, ³He+Au and p+Al at 200 GeV
- ✓ Identified particle v₂ in ³He+Au
- ✓ Charged hadron v₃ in ³He+Au at 200 GeV

3)Summary

What is the origin of the ridge in p+A?

CMS: Phys. Lett. B 7198(2013)

Key Question: What generates the ridge in small collision systems?

- ✓ Final state interaction: Hydrodynamics?
- ✓ Initial momentum correlation: CGC?

Geometry engineering

- ➤ Different initial geometry → different final state particle emission for p+Au, d+Au and ³He+Au collisions
- The dedicated heavy ion machine RHIC can provide this kind of test with its unmatched versatility

The internal structure of proton

The eccentricity is significantly different for round and eccentric proton

The shape of proton does matter!

Ridge in 0-5% d/³He+Au 200 GeV

- ✓ A ridge is observed in high multiplicity(0-5%) d+Au and ³He+Au collisions
- ✓ In the reference pp collision, the correlation is dominated by momentum conservation (including di-jets)
- \checkmark A Fourier expansion function is fitted to extract the c_n

1/9/2017 Shengli Huang

Correlation in pAu@200Gev

No clear peak is observed for long range angular correlation in p+Au collisions

Still quite different to that of pp, in which a "dip" is seen for the near side two particle correlation

Estimation of non-flow contribution

For c_2 , the non-flow contribution estimated using p+p correlation is <10% in 0-5% d/ 3 He+Au collisions

In 0-5% 3 He+Au collisions, the non-flow contribution is <15% for c_3

Non-flow Estimation in p+pAu

The jet contribution estimated using p+p correlation rises with p_T and reaches about 25% in 0-5% p+Au collisions

A systematic uncertainty is cited instead of subtraction

Shengli Huang

Comparison with p+Au 200 GeV

The v₂ from central p+Au collisions is lower than that of central d+Au and ³He+Au collisions

Smaller initial geometry eccentricity → smaller v₂

1/9/2017 Shengli Huang

v_2/ϵ_2 in small collision systems

The v_2/ϵ_2 in p+Au is higher than that of d+Au and 3 He+Au collisions

This behavior is within the expectation of SONIC model, which includes Glauber initial geometry and viscous hydro evolution.

Initial eccentricity=> final momentum flow

For d/³He+Au, the eccentricities are largest at beginning while the systems do not fully flow together In d/³He+Au, systems are harder to pick up the initial geometry information comparing with that of p+Au

Compare with Hydro + IPGlasma

Hydro+IPGlamas with round proton under-estimates the v_2 in p+Au Shape of proton plays a significant role in the calculation of hydro+IPGlasma

Correlation and nonflow in p+Al@200GeV

The mean multiplicity in 0-5% p+Al collisions is about a factor two lower than that of p+Au

The jet contribution in p+Al is about 33%

The v₂ in p+Al collisions at 200GeV

The v_2 in p+Al is quite similar to that in p+Au collisions

Identified particle v₂ in ³He+Au

At p_T < 1.5 GeV/c: mass order -- v2(proton) < v2(kaon) < v2(pion) At p_T > 2.0 GeV/c: difference for meson and baryon These behaviors are very similar to that in Au+Au collisions and calculations of viscous hydro.

Number of Quark Scaling in ³He+Au

The familiar behavior of number of quark scaling observed in Au+Au collisions is also seen in the small ³He+Au system

The v₃ in ³He+Au collisions at 200 GeV

0-5% 3He+Au collisions PRL 115,142301

At low p_T , v_3 in 3 He+Au collisions prefer to the calculation from super SONIC which has the preequilibrium flow

Require more accurate measurement!

Comparing with v₃ in d+Au would further help us to test the initial geometry effect. New d+Au 200 GeV run in 2016!

(Super)SONIC: arXiv:1502.04745

Summary

- The ridge is seen in p+Al, p+Au, d+Au and ³He+Au collisions.
- A similar v₂ is seen in p+Al and p+Au collisions and smaller than that of d+Au and ³He+Au collisions
- The number of quark scaling is also observed for identified particle v₂ in ³He+Au collisions
- The sizeable v_3 is observed in ${}^3He+Au$ collisions and the v_3 of d+Au will come out soon